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Review of mathematical statistics 
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• Population 

o Model specification  

� Parametric and non-parametric models 

� How to define a model?  
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• Sampling process  

o Random sample: Independent and identically distributed observations 

o Other sampling processes: stratified sampling, cluster sampling or non-random processes like 

convenience sampling or snowball (you ask the participants to provide you with names of those 

that will be able to provide you with important information) …. 

o Understanding variability 

• Statistical inference: The role of uncertainty 

• Parametric and non-parametric inference: Population )|(~ θxfX  

o If the density (probability) function (.)f  is known (and θ  is unknown) we face a parametric 

inference problem.  

o If (.)f  (and possibly θ ) is unknown we face a non-parametric problem. 
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• Parametric inference:   Population )|(~ θxfX  

o Parameter space Θ  - Depends on the chosen model (and possibly on additional information)  

o Support set of a distribution → { }Θ∈>= θθ ,0)|(: xfxDx  

� Sample space of X  and support set of the distribution. The use of an indicator function 

� Example: )(~ θPoX  







==

−

otherwise0

,2,1,0
!)(

�x
x

e

xf

x

X

θθ

 or { } )(
!

)( ,2,1,0 xI
x

e
xf

x

X �

θθ−

=  

• Random sample ),,,( 21 nXXX �  

o Sample space 

o Sample distribution (this is a central concept in statistics) 

o Examples 
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• Statistic 

o Definition: Real valued or vector-valued function of the random sample. The domain of the 

function is the sample space 

o Sampling distribution of a statistic  

o Observed value of a statistic 

o Examples  

• How to get the sampling distribution of a statistic? 

o General approach: ( )( )tXXXTtF n ≤= ,,,Pr)( 21 �
X

   

o Theoretical results – most of them proved using the moment generating function of X  (the 

characteristic function)  

o Approximate procedures 

� Central limit theorem 

� Monte-Carlo simulation (to be developed latter) 

o Examples 

� Sample average from a normal population with known mean and variance; 

� Sampling distribution of ∑ =
=

n

i iXT
1

 when we are sampling from a Bernoulli population.  
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• Sample moments  

o k -th sample moment about 0:  ∑ =
=′ n

i
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� Sample mean ∑ =
=

n

i iXnX
1

)/1(  
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� Sample variance  
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• Sample moments versus population moments 
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• Some results (we assume that the corresponding population moments exist) 

o Sample mean 
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o Central limit theorem  
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o Sample variance  
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Order statistics 

• Definition: The order statistics of a random sample ),,,( 21 nXXX �  are the sample values placed in 

ascending order. They are denoted by )()2()1( nXXX ≤≤≤ �  or by nnnn XXX ::2:1 ≤≤≤ �  or 

nYYY ≤≤≤ �21  

• Comments: 

o  Unlike the random sample itself, the order statistics are not independent. If yY j >  then yYs >  

for ks > . 

o  The sample minimum and the sample maximum are examples of order statistics. 

o  Remember that the sample median is defined to be the middle order statistic if n  is odd 

( 2/)1( +nY ) or the average of the middle two order statistics if n  is even ( 2/12/ 5.05.0 nn YY +×+× ). 

• Marginal cumulative distribution of the r-th order statistic: Let ),,,( 21 nXXX �  denote a random 

sample of size n  from a population with cumulative distribution function )(xFX . The marginal 

cumulative distribution will be ( )( ) ( )∑ =

−−
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Proof: (next slide) 
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Proof: 
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• If X  is a continuous random variable the density function of the r-th order statistic will be 

( )( ) ( ) )()(1
)!(!1)!1(

!
)(

1
yfyFyF

rnr

n
yf X

rn

X

r

XYr

−− −
−−

=  

Proof: see Casella and Berger, 2
nd

 edition, p 229. 

• Example: Let us consider a continuous random variable following an exponential distribution with 

mean θ  and a sample of size 5. The density function of the sample median will be 

( ) ( ) ( ) 01301
!2!1!2

!5
)( /32/1/12/2/

3
>−=−= −−−−−−−

yeeeeeyf
yyyyy

Y
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• Let X  be a continuous random variable with distribution function )(xF  and density )(xf . )(xF  is 

strictly monotone for 1)(0 << xF , and let m  be the population median ( m  is the unique solution of 

2/1)( =mF ). Let M  be the sample median. Then, it can be proved that  M  is asymptotically 

distributed as a normal variable with mean m  and variance 
12 ))(4( −

mfn , i.e. 

( ) )1;0(~)(2)( nnmfmM
�

−  
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POINT ESTIMATION 

• We are in the core of parametric inference i.e. we have a model and we want to estimate the unknown 

parameter(s), i.e. )|(~ θxfX , Θ∈θ  where (.)f  is a known density (probability) function and θ  is an 

unknown parameter. 

• In real world we could also consider that our knowledge of (.)f  is questionable but, at this stage, we 

will not proceed in such direction. 

• They are 2 main problems in point estimation: 

o How to find estimators? 

o How to evaluate the “quality” of an estimator? 

At this point we only look for an answer to the second question. 

• The important thing to notice is that we will evaluate the procedure that generates the estimate and 

not the estimate itself. We must distinguish between estimator and estimate. 

• Keep in mind that a good procedure can lead to a poor estimate and conversely a poor procedure can 

originate a good estimate. However good procedures are more likely to produce good estimates than 

poor procedures. 
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• This evaluation is done considering the set of results that could have been generated by the procedure 

and not a particular one. 

• Example: To illustrate the situation let us consider that we want to estimate the mean θ  of a normal 

population with known variance 
2σ  using the mean of a sample of size n . 

The intuitive procedure is to use the sample average, i.e.  ∑ =
=

n

i iXnX
1

)/1(  as estimator or 

∑ =
=

n

i ixnx
1

)/1(  as an estimate. 

The quality of the procedure (the estimator) is evaluated using the sampling distribution of X . As it is 

well known, X  is a random variable that follows a normal distribution with mean θ  and variance 

n/2σ , i.e., )1;0(~
/

n
n

X

σ
θ−
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Unbiasedness 

• Definition 10.1 (12.1): An estimator θ̂  is unbiased if ( ) θθθ =|ˆE , Θ∈∀θ . The bias 

( ) θθθθ −= |ˆ
ˆ Ebias . 

• Comments: 

� The point is to verify the equality Θ∈∀θ  (see example 2) 

� The bias depends on the estimator being used but also on the particular value of θ . 

� An estimator with a positive bias tends to overestimate the parameter.  

• Example 1: Prove that the sample mean is an unbiased estimator for the population mean 

(assume that the population mean exists). 

Let us denote the population mean by µ . 

( ) µ===
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• Example 2: Consider a Bernoulli population with mean θ  and 3.02 =T  as an estimator for θ . As 

it is obvious 2T  is a bad estimator since it does not take into account the sample values. For 

3.0=θ , θ=)( 2TE  but 2T  is a biased estimator since the equality θ=)( 2TE  is not true Θ∈∀θ .  
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• Example 10.4 (12.4): A population has an exponential distribution with a mean θ . We want to 

estimate the population mean using a sample of size 3. Determine the bias of the sample mean 

and the sample median as estimators of the population mean. 

Sample mean:  ( | )E X θ θ=   No bias 

Sample median:  Let T  be the sample median.  ( )| 5 / 6E T θ θ=     / 6bias θ= −  
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Then 6/ˆ θθ −=bias . On average, the estimator underestimates the population mean θ  

which is not a surprise. Remember that the median of the population is ln 2θ θ<   – the 

sample median is also a biased estimator for the population median (ln2 < 5/6). 
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• Definition 10.2 (12.2): An estimator θ̂  is asymptotically unbiased if ( ) θθθ =
∞→

|ˆlim E
n

, Θ∈∀θ .  

• Example 10.5 (12.5) ( )θ;0~ UX , sample ),,,( 21 nXXX �  and iXmaxˆ =θ .  
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The estimator is biased but is asymptotically unbiased as 
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• How to compare 2 unbiased estimators?  

o Let T  and T ′  be 2 unbiased estimators for the parameter θ . We will say that T  is better than T ′  if 

)|var()|var( θθ TT ′≤ , Θ∈∀θ  (the inequality has to be strict for, at least, one θ ). 

o Example: )(~ θPoX  and let us consider  XT =  and 
2

ST =′  as estimators of θ . 

θθθ == )|()|( XETE   θθθθ ===′ )|var()|()|( 2
XSETE  
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• Definition (CB): An estimator T  for )(θτ  is a best unbiased estimator of )(θτ  if it satisfies 

)()|( θτθ =TE  for all θ  and, for any other estimator W  with )()|( θτθ =WE , we have 

)|var()|var( θθ WT ≤  for all θ . T  is also called a uniform minimum variance unbiased estimator 

(UMVUE) of )(θτ . 
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• Cramér-Rao Inequality applied to unbiased estimators 

Let ( )nXXX ,,, 21 �  be a random sample from a population with probability density function 

)|( θxf X  and let ),,,( 21 nXXXTT �=  be an unbiased estimator of )(θτ satisfying  

( )∫ ×
∂
∂

=
x

xxx
D

dfTTE
d

d
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θ
θ

θ
 and ∞<)|var( θT .  
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• Comments 

o The original Cramér-Rao inequality is proved for any estimator and for non-independent sampling 

– see Casella and Berger, 2
nd

 edition, page 335. 

o ( )∫ ×
∂
∂

=
x

xxx
D

dfTTE
d

d
)|()()|( θ

θ
θ

θ
. We can swap the derivation (in order to θ ) with the 

integration (in order to x ). The set of support of X  cannot depend on θ  (the uniform density 

function doesn’t fulfill this condition). 

o ∞<)|var( θT : The variance of T  should exist. 

o When we have an unbiased estimator of θ  we can compare its variance with the lower bound 

given by the Cramér-Rao inequality. If they are equal we have an UMVUE. If not, nothing can be 

concluded (nothing is said about the possibility that an unbiased estimator with a variance equal 

to the lower bound exists). 

o )(θℑ  is called Fisher information 
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• Example – Consider a Poisson population with mean θ  and show that X  in an UMVUE estimator for θ . 

We have already shown that X  is an unbiased estimator for θ  and that nX /)var( θ= . 

Let us now calculate the lower bound of the Cramér-Rao inequality. 
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As X  is an unbiased estimator of θ  with a variance equal to the lower bound, we can conclude 

that X  in an UMVUE estimator for θ . 
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Mean-squared error 

• How to compare estimators that are not unbiased? 

• Definition 10.4 (12.4): The mean-squared error of an estimator is  ( )( )θθθθθ |ˆ)(
2

ˆ −= EMSE  

• The mean-squared error can be rewrite as  

( )( ) ( )2

ˆ

2

ˆ )()|ˆvar(|ˆ)( θθθθθθθ θθ biasEMSE +=−=  

• Comments 

o The mean-squared error is a function of the true value of the unknown parameter, θ , so that 

some estimator can perform very well for some values of  θ  and poorly for other values of θ  

o Using the MSE with an unbiased estimator of θ  is the same as using its variance 

• Example: Let us consider a Bernoulli population with parameter θ  and two estimators for θ  

obtained using a sample of size n : XT =1  and 3.02 =T . Compare these estimators using their MSE.  
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Although 2T  is an inadequate estimator of θ  (the estimator does not take into account the collected 

sample) we see that )(
1

θTMSE  is less than )(
2

θTMSE  for some values of θ  

 

• It is convenient to use a qualification criterion before using the MSE and only compare estimator that 

fulfill such criterion. 
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Consistency 

• Definition 10.3 (12.3) – An estimator is consistent (often called, in this context, weakly consistent) if, 

for all 0>δ  and any θ , 0)ˆPr(lim =>−
∞→

δθθn
n

. 

• Comments: 

o A sufficient although not necessary condition for weak consistency is that θθθ =
∞→

)|ˆ(lim n
n

E  and 

0)|ˆvar(lim =
∞→

θθn
n

. Such statement can be proved using Markov inequality 

( aXEaX /)()Pr( ≤≥ )
1
. 

o Consistency is a property of the sequence of estimators, �� ,,,, 21 nXXX , and not of the 

estimator itself. 

o The idea behind consistency is that the estimator has to work well for large samples. 

 

                                                           

1
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• Example 10.6 (12.6) – Prove that, if the variance of a random variable is finite, the sample mean is a 

consistent estimator of the population mean. 

µ=)(XE  

nX /)var( 2σ=  

 

Then 

 

µµ ==
∞→∞→ nn

XE lim)(lim  

 

0/lim)var(lim 2 ==
∞→∞→

nX
nn

σ  
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INTERVAL ESTIMATION 

• Unlike point estimation, interval estimation leads to a set of values. 

• The idea is to associate a level of confidence to such intervals. We are “trading” precision for confidence. 

• Definition 10.6 (12.6) – A ( )100 1 %α−  confidence interval for a parameter θ  is a pair of random values, 

L and U, computed from a random sample such that ( ) αθ −≥≤≤ 1Pr UL  for all θ .  

• Comments: 

o  The definition does not uniquely define an interval 

o  When we replace the random variables by their observed values, nothing is said about whether or 

not the interval encloses θ  

o  The level of confidence is a property of the process and not a property of the particular values 

obtained 

o  Note that the inequality concerns discrete random populations (more theoretical). 

• How to construct a confidence interval? 

o Not an easy question when considering a general situation 

o Usually we follow the pivotal method 
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• Pivotal quantity – A random variable ),,,,( 21 θnXXXQ �  is a pivotal quantity if the distribution of 

),,,,( 21 θnXXXQ �  does not depend on θ . 

• Comments: The function ),,,,( 21 θnXXXQ �  

o depends only on the sample ),,,( 21 nXXX � , on θ  and, possibly, on some known values; 

o is completely known; 

o usually, is monotonic in θ . 

• Pivotal method (we will assume that ),,,,( 21 θnXXXQ �  follows a continuous distribution) 

o Step 1 – Find 1q  and 2q  such that ( ) αθ −=≤≤ 1),,,,(Pr 2211 qXXXQq n� . 

o Step 2 – From 2211 ),,,,( qXXXQq n ≤≤ θ�  define L  and U  such that 

ULqXXXQq n ≤≤⇔≤≤ θθ 2211 ),,,,( � . 

L  and U  define a confidence interval for θ . How to choose the pair 1q  and 2q ? 

 Optimally 1q  and 2q  are chosen to minimize the length (or its expected value if such length is random) 

of the confidence interval. As this task is difficult to fulfill in most situations we can follow a practical 

approximation and choose 1q  and 2q  such that 

( ) ( ) 2/),,,,(Pr),,,,(Pr 221121 αθθ =>=< qXXXQqXXXQ nn ��   
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• Some well-known pivotal quantities: 

o For normal populations or when we have a large sample some pivotal quantities are well-known for 

usual situations;  

o For other situations we try to find and estimator θ̂  for θ  with a known distribution (independent of 

θ ). If the sample is large enough and the estimator well behaved we can use )1;0(~
)ˆvar(

)ˆ(ˆ
n

E �

θ
θθ −

. 

Note that, as this result is asymptotic, we can use an adequate approximation for )ˆ(θE  and )ˆvar(θ  
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A) Gaussian (normal) populations:  

 Pivotal Quantity Confidence Interval 

Mean (known variance) 
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B) Large samples (Confidence interval for the mean):  

 Pivotal Quantity Confidence Interval (aprox) 

Case 1 
1 2( , ,..., , ) ~ (0,1)
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Bernoulli populations: )(~ θBerX  

nn

X
X

)1()var(
)var(

θθ −
==   or  

n

XX
X

)1(
)(var

^ −
=   

Case 1  





























+

−
++−









+

−
+−−

n

z

n

XX

n

z
z

n

z
X

n

z

n

XX

n

z
z

n

z
X

2
2/

2

2
2/

2/

2
2/

2
2/

2

2
2/

2/

2
2/

1

)1(

42
;

1

)1(

42

α

α
α

α

α

α
α

α

 

Case 2  










 −
+

−
−

n

XX
zX

n

XX
zX

)1(
;

)1(
2/2/ αα  

 



 

29 

 

Poisson Populations: )(~ θPoX  
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TEST OF HYPOTHESES 

• Null, H0, and alternative, H1, hypotheses 

• The two hypotheses are not treated symmetrically (Neyman-Pearson approach). We do not reject H0 

unless there is strong statistical evidence against it. 

• The result of a test is the rejection (or not) of the null hypothesis. What so ever the decision is, an 

error is always possible: 

o Type I error: Rejection of the null when the null is true; 

o Type II error: Not rejecting the null when the null is false. 

 

 0H  true 0H  false 

Reject 0H  Type I error  Correct 

Do not reject 0H  Correct Type II error 
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• Using a simple example it can be shown that it is not possible to minimize both errors. 

),(~ 2σµNX  with 42 =σ . The test is  10:0 =µH  against 14:1 =µH .  

a) Let us assume that our sample has only one observation and that the rejection region is given 

by  { }5.12: >= xxW . Determine the probabilities associated with type 1 and type 2 errors. 

( 1056.0≈α , 2266.01 ≈− β ). 

b) Show that decreasing the probability of a type 1 error implies increasing the probability of a 

type 2 error and vice-versa 

 

Note that if we increase the sample size we can reduce simultaneously the probabilities of both errors 
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• Definition 10.7 (12.7) – The significance level of a hypothesis test is the probability of making a Type I 

error given that the null is true. If it can be in more than one way, the level of significance is the 

maximum of such probabilities. The significance level is usually denoted byα . 

• Comments: 

o This definition is conservative since we are considering the worst case; 

o Typically, the worst case is on the boundaries between H0 and H1; 

o Usual values for the level of significance are 1%, 5% or 10%. 

• Using the Neyman-Pearson approach one should control the probability associated with the Type I 

error, i.e. one must control the significance level of the test, and choose the test with a smaller 

probability of a Type II error, given the significance level. 

• Comments: 

o The approach give more importance to the type I error; 

o Such a test is called a most powerful (uniformly most powerful test); 
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• Definition 10.8 (12.8) – A hypotheses test is uniformly most powerful (UMP) if no other test exists 

that has the same or lower significance level and, for a particular value within the alternative 

hypothesis, has a smaller probability of making a Type II error. 

• Test statistic –The test statistic is a function of the sample observations with a known distribution 

under the null. The design of a test procedure looks at all the samples that might have been observed 

and not at the particular sample that was observed. 

• Rejection region – The test specification is completed by defining a rejection region. If the observed 

value of the test statistic falls in the rejection region we will reject the null, otherwise we will not 

reject the null.  

• How develop a test of hypotheses? 

o Define the hypotheses H0 and H1 and  

o Choose an adequate significance level 

o Obtain a test statistic and determine the rejection region 

o Calculate the observed value of test statistic and conclude 
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• Open questions: How to obtain the test statistic and, given the test statistic, how to determine the 

rejection region? 

o Theoretical results: Neyman-Pearson’s lemma and Karlin-Rubin theorem 

o Empirical rule of thumb: When testing a mean, a variance or a proportion (Bernoulli 

populations) using the “natural” test statistic the rejection region is on the side of the 

alternative. 

o In most situations a UMP test does not exist, namely when the null hypothesis is an equality and 

the alternative is both sides (“=” against “ ≠ ”). 

• Some useful results: 

Normal populations: 

Test about the mean, variance known   )1;0(~
/

0 n
n

X
Z

σ
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Test about the mean, variance unknown  )1(
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Large samples: 

Test about the mean, variance unknown  )1;0(~
/

0 n
nS

X
T

�µ−
=   
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Bernoulli population     
( )

)1;0(~
/1 00

0 n
npp

pX
Z

�

−

−
=  

Poisson population     )1;0(~
/0

0 n
n

X
Z

�

µ
µ−

=  

• Examples 10.13 to 10.15 (12.13 to 12.15) – Your company has been basing its premium on an 

assumption that the average claim is 1200. You want to raise the premiums, and a regulator has 

insisted that you provide evidence that the average now exceeds 1200. To provide such evidence, the 

following numbers have been obtained: 

27   82   115   126   155   161   243   294   340   384   457   680   855   877   974   1193   1340   1884   2558   15743 

a) What are the hypotheses for this problem (example 10.13)? 

b) Complete the test using the test statistic and rejection region that is promoted in most statistics 

books ( 05.0=α ). Assume that the population has a normal distribution with standard deviation 

3435 (Example 10.14). 
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c) Determine the probability of making a Type II error when the alternative hypothesis is true with 

2000=µ  (Example 10.15). 

Answers: 

b)  

4.1424=x  292154.03435/20)12004.1424( =×−=z  

Test (N-P procedure): 05.0=α  645.1=αz  (one side test)  

Rejection region: ( ){ }645.1:,,, 2021 >= zxxxW �  or ( ){ }20/3435645.11200:,,, 2021 ×+>= xxxxW �  

conclusion: do not reject H0 

c) 7269.0)603455.0Pr()2000|507.2463Pr()2000|Accept Pr( 0 =≤==≤== ZXH µµ  
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p-values 

• Under the “classical” (Neyman-Pearson) approach a test will produce a decision on whether or not to 

reject 0H  for a predetermined value of α . 

• Sometimes this procedure does not provide the recipient of the result with clear information on the 

strength of the evidence against 0H . 

• A more informative approach is to calculate and quote the p-value of the observed test statistic. This 

is the significance level of the test statistic, i.e. 

� The probability, assuming 0H  is true, of observing a test statistic at least as “extreme”  

(inconsistent with 0H ) as the value observed; 

� The significance level that originates a critical value equal to the observed value of the test 

statistic.  

 

If α  is greater than the p-value we reject 0H  and if α  is smaller than the significance level we do not reject 

0H  

 



 

39 

 

• Definition 10.9 (12.9) – For a hypothesis test, the p-value is the probability that the test statistic takes 

on a value that is less in agreement with the null hypothesis than the value obtained from the sample. 

Tests conducted at a significance level that is greater than the p-value will lead to a rejection of the 

null hypothesis, while tests conducted at a significance level that is smaller than the p-value will lead 

to a failure to reject the null hypothesis. 

• Comment – The definition should refer less than or equal to. This point has no practical influence 

when the test statistic follows a continuous distribution as it is generally the case.  

• Example: Resume previous example using p-value.  

 

Test (p-value): p-value= 3851.0)1200|Pr()Pr( ==≥=≥ µxXzZ   do not reject H0 for 05.0=α  
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Appendix 1 – Generalization of Example 10.4 (12.4) 

 

 A population has an exponential distribution with meanθ . We want to estimate the population mean using 

a sample of size 12 += kn . Determine the bias of the sample mean and the sample median as estimators 

of the population mean. 

Sample mean:   θ=)(XE  

Sample median: Let T  be the sample median. Then  
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As the median of the population is 2lnθ  we can imagine that, as the sample size increases, )(kh  will be 

closer to 2ln . Note that the limit of )(kh  is not 2ln  (I think). 
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Using Mathematica we can get values of )(kh  for different sample sizes. Remember that 693147.02ln ≈ . 

 

 

n k factor n k factor 

3 1 0.833333 41 20 0.705194 

5 2 0.783333 61 30 0.701277 

7 3 0.759524 101 50 0.698073 

9 4 0.745635 201 100 0.695629 

11 5 0.736544 1001 500 0.693646 

21 10 0.71639 2001 1000 0.693397 

31 15 0.709016 10001 5000 0.693646 
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Appendix 2 – Cramér Rao inequality 

 

 

o Cramér-Rao Inequality applied to biased estimators 

Let ( )nXXX ,,, 21 �  be a random sample from a population with probability density function 

)|( θxf X  and let ),,,( 21 nXXXTT �=  be any estimator of )(θτ satisfying  

( )∫ ×
∂
∂

=
x

xxx
D

dfTTE
d

d
)|()()|( θ

θ
θ

θ
 and ∞<)|var( θT .  

Then 
)(

)|(

)|var(

2

θ

θ
θ

θ
ℑ










≥
n

TE
d

d

T  where 








∂

∂
−=









∂
∂

=ℑ )|(ln)|(ln)(
2

22

θ
θ

θ
θ

θ XfEXfE XX  

 

Proof: See Casella and Berger, 2
nd

 edition, pages 335 to 337 
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Appendix 3 – Independence between X  and 
2

S  when the population is normal 

 

o Without loss of generality let us consider that our population has mean 0 and variance 1. 

o Random sample ),,,( 21 nXXX � . The density function of the random sample is given by 
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and finally ( ) ( ) ( ) ( )( ) ( ) 





 −+−−=−−= ∑∑∑ ==

−

=

− n

i i

n

i i

n

i i XXXXnXXnS
2

22

2

1

1

212 11  

o Second step: As 
2

S  is a function of ),,,( 32 XXXXXX n −−− �  we have to prove that X  is 

independent of that vector. If we define XY =1 , XXY −= 22 , XXY −= 33 , …., XXY nn −= we 

must prove that 1Y  is independent of ),,( 2 nYY � . 

o Third step: Define the joint distribution of ),,,( 21 nYYY �  

We have 
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Then 
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As the joint distribution is the product of the marginal distributions, 1Y  is independent of 

),,( 2 nYY � .  
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Appendix 4 – Confidence interval for Bernoulli populations (large samples) 
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Then, the possible values of θ  have to be between the 2 roots of the equation. 
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Appendix 5 – Unbiased estimator for σ  (normal populations) 

 

Let ),...,,( 21 nXXX  be a random sample of size n  from a normal population with mean µ  and variance 
2σ . 
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Applying result 1 to Q, we get 
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Consequently an unbiased estimator will be given by 
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Appendix 6 – Density function for the rth order statistic 
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