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e Sampling process

o Random sample: Independent and identically distributed observations
o Other sampling processes: stratified sampling, cluster sampling or non-random processes like
convenience sampling or snowball (you ask the participants to provide you with names of those

that will be able to provide you with important information) ....
o Understanding variability

o Statistical inference: The role of uncertainty
e Parametric and non-parametric inference: Population X ~ f(x18)

o If the density (probability) function f(.) is known (and & is unknown) we face a parametric

inference problem.

o If f(.) (and possibly @) is unknown we face a non-parametric problem.



Instituto Superior de Economia e Gestao

e Parametric inference: Population X ~ f(x18)
o Parameter space ® - Depends on the chosen model (and possibly on additional information)

o Support set of a distribution = D_={x: f(x18)>0, 8c O}

= Sample space of X and support set of the distribution. The use of an indicator function
= Example: X ~ Po(0)
-0 px

e -0 nx
7 x=012,-- 6
fim={ o 7 or  fy(x)=°

0 otherwise

x' 1{0,1,2’...}()‘:)

¢ Random sample (X,,X,,---, X )
o Sample space
o Sample distribution (this is a central concept in statistics)

o Examples
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e Statistic
o Definition: Real valued or vector-valued function of the random sample. The domain of the
function is the sample space
o Sampling distribution of a statistic
o Observed value of a statistic

o Examples

e How to get the sampling distribution of a statistic?
o General approach: Fy (t)=Pr(T(X,,X,, -, X,)<t)
o Theoretical results — most of them proved using the moment generating function of X (the
characteristic function)
o Approximate procedures
= Central limit theorem
= Monte-Carlo simulation (to be developed latter)
o Examples

= Sample average from a normal population with known mean and variance;

= Sampling distribution of T = Z;Xi when we are sampling from a Bernoulli population.
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e Sample moments
o k-th sample moment about0: M, =(1/n) Z;Xik i
= Sample mean X =1/n) Z;Xi

o k-th sample momentabout X: M, =(1/n) Z;(Xi =9 i,

= Sample variance

1 n — 1 n —
M, :;Zi=1(Xi _X)2 :;Ziﬂxl’z -X

s’ :ﬁ " (x,-X)

¢ Sample moments versus population moments
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e Some results (we assume that the corresponding population moments exist)

o Sample mean

var(X) o’

EX)=EX)=u; var(X)= ; .

o Central limit theorem

o/~n o
o Sample variance
_ 42 -2 2 _3 2
EMy)=""16  vaa,y=teTHe T BT g = BOX - )
n n n n
1 n < \2
S? = " (X, -X n>1
LS (- %)

E(S*)=0" var(SZ)=l(ﬂ4—n_3ﬂzzj
n n—1
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Order statistics
¢ Definition: The order statistics of a random sample (X, X,,---, X, ) are the sample values placed in
ascending order. They are denoted by X ;) < X, <---< X, orby X, <X, <.-<X  or
Y, <Y,<---<Y,
e Comments:

o Unlike the random sample itself, the order statistics are not independent. If Y, > y then ¥, >y

for s> k.
o The sample minimum and the sample maximum are examples of order statistics.
o Remember that the sample median is defined to be the middle order statistic if n is odd

(Y,+1)/2) or the average of the middle two order statistics if n is even (0.5xY,,, +0.5%Y,,,,,).

¢ Marginal cumulative distribution of the r-th order statistic: Let (X, X,,---, X, ) denote a random

sample of size n from a population with cumulative distribution function F, (x). The marginal
n n . i
cumulative distribution will be F, (y) = Zj_ ( ,)(FX (y)' (A—=F, (y)"™’
r =r ]

Proof: (next slide)
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Proof:
F, (y) =Pr(Y, <)

:Pr(Yr < y/\Yr-i-l > y)+Pr(Yr+l < y/\Yr+2 > y)++Pr(Yn—l < y/\Yn > y)+Pr(Yn < y)
n r n—r n r+ n—(r+
(e o 0= reon o e O =R

n

o YO T

n—1

j(FX O (1= Fy ()"

n

-3 o0 0= mo

n
J
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e |f X isacontinuous random variable the density function of the r-th order statistic will be

fr ()= (Fy () " A=Fe )" £ ()

n!
(r=D!l(n—r)!
Proof: see Casella and Berger, 2" edition, p 229.
e Example: Let us consider a continuous random variable following an exponential distribution with

mean & and a sample of size 5. The density function of the sample median will be

fy3 (y) = 231!2' (l—e_y/9)2 (e—y/‘g)z O 'e? =300 (l_e—y/0)2 o318 y>0

e lLetX be acontinuous random variable with distribution function F(x) and density f(x). F(x) is
strictly monotone for 0 < F(x) <1, and let m be the population median (m is the unique solution of

F(m)=1/2). Let M be the sample median. Then, it can be proved that M is asymptotically

distributed as a normal variable with mean m and variance (4n f(m)*) ", i.e.

(M —m) (2 £ (m)\In)~n(0;1)
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POINT ESTIMATION
We are in the core of parametric inference i.e. we have a model and we want to estimate the unknown
parameter(s), i.e. X ~ f(x18), 8 O where f(.) is a known density (probability) function and & is an

unknown parameter.

In real world we could also consider that our knowledge of f(.) is questionable but, at this stage, we

will not proceed in such direction.

They are 2 main problems in point estimation:
o How to find estimators?
o How to evaluate the “quality” of an estimator?

At this point we only look for an answer to the second question.

The important thing to notice is that we will evaluate the procedure that generates the estimate and

not the estimate itself. We must distinguish between estimator and estimate.

Keep in mind that a good procedure can lead to a poor estimate and conversely a poor procedure can
originate a good estimate. However good procedures are more likely to produce good estimates than
poor procedures.

10
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This evaluation is done considering the set of results that could have been generated by the procedure
and not a particular one.
Example: To illustrate the situation let us consider that we want to estimate the mean @ of a normal

population with known variance & using the mean of a sample of size n.

The intuitive procedure is to use the sample average, i.e. X =(1/n) Z;Xi as estimator or

x={/n) Z; X; as an estimate.

The quality of the procedure (the estimator) is evaluated using the sampling distribution of X . As it is
well known, X is a random variable that follows a normal distribution with mean & and variance

X-6
oln

c’ln,ie., ~n(0:D)

11
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Unbiasedness
e Definition 10.1 (12.1): An estimator @ is unbiased if E(él 49)= 0,V 0e O.The bias
bias, = E(016)-6.
e Comments:
* The point is to verify the equality Ve O (see example 2)

* The bias depends on the estimator being used but also on the particular value of 6.

= An estimator with a positive bias tends to overestimate the parameter.

e Example 1: Prove that the sample mean is an unbiased estimator for the population mean
(assume that the population mean exists).

Let us denote the population mean by .
X, ) I <«
E(X)= E Lizl —E ;ZizlE(Xi):,u

e Example 2: Consider a Bernoulli population with mean 8 and 7, = 0.3 as an estimator for 8. As
it is obvious 7, is a bad estimator since it does not take into account the sample values. For
6=0.3, E(T,)=0 but T, is a biased estimator since the equality E(T,) =0 is not true Ve O.

12
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e Example 10.4 (12.4): A population has an exponential distribution with a mean . We want to
estimate the population mean using a sample of size 3. Determine the bias of the sample mean

and the sample median as estimators of the population mean.

Sample mean: E(X10)=0 No bias
Sample median: Let T be the sample median. E(T10)=56/6 bias =-6016
_ 3V e 110\ g1 116
fT(t)—l!m!(l ) e )o " e £>0
=607 (1—e"%)e "% =3(2/0)e 7 —2(3/6)e™>"* £>0

E(T16) =j:th(t)dr

=["102r0)e 1" ~2(3/0)e ™% Jar =3[ "1(2/6)e"? dr 2 "1(3/6)e™? di

_13x 6 2 Q 96-46 549
2 3 6 6
Then bias, =—60/6. On average, the estimator underestimates the population mean 6

which is not a surprise. Remember that the median of the populationis #In2< 8 —the

sample median is also a biased estimator for the population median (In2 < 5/6).

13
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e Definition 10.2 (12.2): An estimator 0 is asymptotically unbiased if lim E(@ I 6)= 0,VOe®.

e Example 10.5(12.5) X ~U(0;6), sample (X,,X,,---,X,) and QA:maxXl..
fx(x)=1/6 O<x<@
B n! n—1(y 0
1o = o P D) 0= Fe )" £ )

=n(y/0)"" 1/0)=n0"y""  0<y<8

E(élﬁ)zj:yfé(y)dy = I:ynﬁ_”y”_l dy =¢9_”j:n y" dy

__" g
n+l1

The estimator is biased but is asymptotically unbiased as

lim E(§16)= lim—"— 6=

n—oo n—o n + 1

14
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e How to compare 2 unbiased estimators?

o Let T and T’ be 2 unbiased estimators for the parameter 8. We will say that T is better than T~ if
var(T 18) < var(T’18), V8 e O (the inequality has to be strict for, at least, one 8).

o Example: X ~ Po(6) and let us consider T=X and T'=S? as estimators of 8.

ET16)=EX10)=86 E(T'16)=E(S*18)=var(X 10)=6

var(T10)=var(X 10)=c*/n=806/n

var(T’16) :Var(SZIH):l(0+392—n—_3 02):Q+1(3”_3_”+3 )92 _0, 2 p > var(T 1 )
n n—1 n n n—1 n n—1

e Definition (CB): An estimator T for 7(€) is a best unbiased estimator of 7(0) if it satisfies
E(T10)=17(0) forall @ and, for any other estimator W with E(W |8) =7(8), we have

var(T 1 @) < var(W 1 @) forall 8. T is also called a uniform minimum variance unbiased estimator
(UMVUE) of 7(0).

15
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¢ Cramér-Rao Inequality applied to unbiased estimators

Let (Xl,Xz,u-,Xn) be a random sample from a population with probability density function

fx(x10) andlet T=T(X,,X,,---,X,) be an unbiased estimator of 7(8)satisfying

d )
S ET16) _ijﬁ(T(x)xf(xm))dx and var(T 1 §) < .
d 2
(d&f(e)j d : 5
Then var(T'10) > n50) where 3(0) = E(ﬁln [y (X Iﬁ)j =—E[802 In f, (X Iﬁ)j

16
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o The original Cramér-Rao inequality is proved for any estimator and for non-independent sampling

e Comments

— see Casella and Berger, 2" edition, page 335.

o %E(T 10) = J‘D %(T(x)xf(x |8))d x. We can swap the derivation (in order to 8) with the

integration (in order to x). The set of support of X cannot depend on & (the uniform density

function doesn’t fulfill this condition).

o var(T | 8) < co:The variance of T should exist.

o When we have an unbiased estimator of & we can compare its variance with the lower bound
given by the Cramér-Rao inequality. If they are equal we have an UMVUE. If not, nothing can be

concluded (nothing is said about the possibility that an unbiased estimator with a variance equal
to the lower bound exists).

o 3(0) is called Fisher information

17
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e Example — Consider a Poisson population with mean 8 and show that X in an UMVUE estimator for 6.

We have already shown that X is an unbiased estimator for 8 and that var(X)=8/n.

Let us now calculate the lower bound of the Cramér-Rao inequality.

—49 X

fx(x10) = 9 Inf,(x16) =—6+xIn6—In(x!)
x!

0 X 8 X

ﬁlnfx(xlé?)——l+g Y (x10)=——

S@)=—E 2 nf,(x16) |- ( 5) o1 2(6)=6 4 o) -
00> " 2) 9> 6 do

o]

n3(6) n/9 Z

The lower bound is then

As X is an unbiased estimator of @ with a variance equal to the lower bound, we can conclude
that X in an UMVUE estimator for 8.

18
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Mean-squared error

How to compare estimators that are not unbiased?
Definition 10.4 (12.4): The mean-squared error of an estimator is MSE;(6) = E((é — 6’)2 I 6’)
The mean-squared error can be rewrite as
MSE,6) = E(0- 6] 16)=var(@16) + (bias, (6))
Comments
o The mean-squared error is a function of the true value of the unknown parameter, &, so that

some estimator can perform very well for some values of @ and poorly for other values of 8

o Using the MSE with an unbiased estimator of @ is the same as using its variance

Example: Let us consider a Bernoulli population with parameter @ and two estimators for 8

obtained using a sample of size n: T, = X and T, =0.3. Compare these estimators using their MSE.

(-6 (-6
(1-9),,_00-06)

MSE, 8) = E(T, - 6) 16)= E(X —6F 16)=var(X 16)+ (E(X 16) - 6) =
n

MSE,, (6) = E(T, -6)16)= E((0.3-6) 16)=(0.3-6)’

19
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0.5

/
N /
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Theta

Mean squared error (n=10)

e MSE_T1 === MSE_T2

Although T, is an inadequate estimator of 8 (the estimator does not take into account the collected

sample) we see that MSE;. (@) is less than MSE,, (@) for some values of &

® |tis convenient to use a qualification criterion before using the MSE and only compare estimator that

fulfill such criterion.

20
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Consistency
e Definition 10.3 (12.3) — An estimator is consistent (often called, in this context, weakly consistent) if,

forall §>0 and any 8, lim Pr(6, -6 > §)=0.

n—oo

e Comments:
o A sufficient although not necessary condition for weak consistency is that lim E(én |8)=6 and

n—yo0

lim Var(én | @) =0. Such statement can be proved using Markov inequality

n—oo

(Pr(X|2a)<E(X|)/a)".
o Consistency is a property of the sequence of estimators, Yl, Xz,..., Yn,---, and not of the

estimator itself.
o The idea behind consistency is that the estimator has to work well for large samples.

1P1~( én_9‘>§):Pr((0An—9)2>§2)SPI'((9n—9)22§2)S 5?2 52 52

21
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e Example 10.6 (12.6) — Prove that, if the variance of a random variable is finite, the sample mean is a

consistent estimator of the population mean.
E(X)=pu

var(X)=0"/n
Then

lim E(X)=1lim u=u

n—oo n—oo

lim var(X) =limc*/n=0

n—oo n—oo

22
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INTERVAL ESTIMATION

¢ Unlike point estimation, interval estimation leads to a set of values.
e The idea is to associate a level of confidence to such intervals. We are “trading” precision for confidence.

e Definition 10.6 (12.6) — A 100(1—a)% confidence interval for a parameter @ is a pair of random values,

L and U, computed from a random sample such that Pr(L<8<U)>1-a forall 6.

e Comments:
o The definition does not uniquely define an interval
o When we replace the random variables by their observed values, nothing is said about whether or
not the interval encloses 6
o The level of confidence is a property of the process and not a property of the particular values
obtained

o Note that the inequality concerns discrete random populations (more theoretical).

® How to construct a confidence interval?
o Not an easy question when considering a general situation

o Usually we follow the pivotal method

23
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¢ Pivotal quantity — A random variable Q(X,, X,,---, X, ,8) is a pivotal quantity if the distribution of
0(X,,X,,,X,,0) does not depend on 6.
¢ Comments: The function Q(X,, X,,**,X,,0)
o depends only on the sample (X, X,,:--,X,), on @ and, possibly, on some known values;
o iscompletely known;
o usually, is monotonicin 6.
¢ Pivotal method (we will assume that Q(X, X,,:--, X, ,8) follows a continuous distribution)
o Step 1-Find g, and g, such that Pr(q, <Q(X,,X,,--,X,,0)<q,)=1-«.
o Step2-From ¢, <Q0(X,,X,,-,X,,0) < g, define L and U such that
g, <0(X,X,,.X,,0)<q, & L<O<U.

L and U define a confidence interval for 8. How to choose the pair g, and ¢, ?

Optimally g, and g, are chosen to minimize the length (or its expected value if such length is random)
of the confidence interval. As this task is difficult to fulfill in most situations we can follow a practical

approximation and choose g, and ¢, such that
Pr(Q(Xl’X2’.“’Xn’6)<ql):Pr(Q(Xl’XZ’”'aXn’e)>QZ):a/2

24
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e Some well-known pivotal quantities:
o For normal populations or when we have a large sample some pivotal quantities are well-known for

usual situations;
o For other situations we try to find and estimator 6 for @ with a known distribution (independent of
| | 6-E©) -
@). If the sample is large enough and the estimator well behaved we can use —(63)~n(0;1).
var

Note that, as this result is asymptotic, we can use an adequate approximation for E(é) and Var(é)

25
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A) Gaussian (normal) populations:

Pivotal Quantity

Confidence Interval

Mean (known variance)

X-u

= o - o
Q(X’X ""’Xn’ ):Z: ~N(O’1) (X_Za _7X+Z0[ _j
1°4%2 U O'/\/; /2\/; /2\/;
Mean (unknown variance) X _ _ S
O, Xy X, ) =T =2 g ( lon e X 1, _)
e S/n 0P /2( 2T
Variance n—18> “DS? (n=1S>
00X, Xy, X,,,0%) = Q ~ 7 (n-1) ((” )57 (n=1)
q, q,
Zaint Plzgp)=1-al2; t,,,0 P,y >1ty)=al2; q,q,: P(Q_yy <q))=P(Q,_)y>q)=a/2

26




B) Large samples (Confidence interval for the mean):
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Pivotal Quantity Confidence Interval (aprox)
Case 1 X-u °
OX\, Xy X ) =2 =—=—H__N@©,1)
var(X)
Case 2 X—-u ° _ [~ [~
Q(Xl,Xza-.-,Xn’ﬂ):Z:—A"'N(O,l) [X_Za/z VaI'(X),X+Za/2 V&I‘(X)J
\ var(X)
Case 3 X—u- _ S - S
Q(X ’X "“’Xn’ ):Z: ~N(O71) (X_Za' _9X+Za _)
v “ S /n > In ?n

g P(z,,,)=1-/2;
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Bernoulli populations: X ~ Ber(6)

var(X) = var(X) _0(-9) or Var(Y):—X 1=X)
n n n
Casel
2 2 2 2 v
z Z X1-X) < z < X(1-X)
X —fer2 _, al2 X — a2y, al2
2n alz\/4n2 n _ 2n alz\/4n2 n
2 ’ 2
14 Za/2 1+ a2
n n
Case 2
_ X1-X) — X(1-X
[X_Za/z ( );X+Za/2 ( )J
n

28
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Poisson Populations: X ~ Po(6)

_ X X
Var(X)zvar( ):g or var(X)=—
n n n
Case 1l -
2 2 ~va 2 2 v d
= Z /z X o z Z X
X — 0:/2_Z al2 +—;X— al? +7 al2 + =
( 2n 2\ 4n?  n 2n “2\ 4 n
Case 2

- X o | X
[X_Za/z ;§X+Za/2 ;j

29
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TEST OF HYPOTHESES

e Null, HO, and alternative, H1, hypotheses
e The two hypotheses are not treated symmetrically (Neyman-Pearson approach). We do not reject HO
unless there is strong statistical evidence against it.
e The result of a test is the rejection (or not) of the null hypothesis. What so ever the decision is, an
error is always possible:
o Type | error: Rejection of the null when the null is true;

o Type Il error: Not rejecting the null when the null is false.

H, true H, false

Reject H, Type | error Correct

Do not reject H Correct Type Il error

30
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e Using a simple example it can be shown that it is not possible to minimize both errors.

X ~ N(u,0%) with 6> =4. The test is H,:pu=10 against H, : u =14.

a) Let us assume that our sample has only one observation and that the rejection region is given

by W ={x:x > 12.5}. Determine the probabilities associated with type 1 and type 2 errors.
(a=0.1056, 1— 5 =0.2266).

b) Show that decreasing the probability of a type 1 error implies increasing the probability of a
type 2 error and vice-versa

040
035
030
025
020
015
010

0.05

0.00
0 5 10 k 15 20 X 25

Note that if we increase the sample size we can reduce simultaneously the probabilities of both errors

31



Instituto Superior de Economia e Gestao

¢ Definition 10.7 (12.7) — The significance level of a hypothesis test is the probability of making a Type |

error given that the null is true. If it can be in more than one way, the level of significance is the

maximum of such probabilities. The significance level is usually denoted by« .
e Comments:
o This definition is conservative since we are considering the worst case;
o Typically, the worst case is on the boundaries between HO and H1;
o Usual values for the level of significance are 1%, 5% or 10%.

e Using the Neyman-Pearson approach one should control the probability associated with the Type |
error, i.e. one must control the significance level of the test, and choose the test with a smaller

probability of a Type Il error, given the significance level.

e Comments:
o The approach give more importance to the type | error;

o Such a test is called a most powerful (uniformly most powerful test);

32
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¢ Definition 10.8 (12.8) — A hypotheses test is uniformly most powerful (UMP) if no other test exists

that has the same or lower significance level and, for a particular value within the alternative

hypothesis, has a smaller probability of making a Type Il error.

e Test statistic —The test statistic is a function of the sample observations with a known distribution
under the null. The design of a test procedure looks at all the samples that might have been observed

and not at the particular sample that was observed.

e Rejection region — The test specification is completed by defining a rejection region. If the observed
value of the test statistic falls in the rejection region we will reject the null, otherwise we will not

reject the null.
e How develop a test of hypotheses?
o Define the hypotheses HO and H1 and
o Choose an adequate significance level
o Obtain a test statistic and determine the rejection region

o Calculate the observed value of test statistic and conclude

33
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e Open questions: How to obtain the test statistic and, given the test statistic, how to determine the
rejection region?
o Theoretical results: Neyman-Pearson’s lemma and Karlin-Rubin theorem
o Empirical rule of thumb: When testing a mean, a variance or a proportion (Bernoulli

populations) using the “natural” test statistic the rejection region is on the side of the
alternative.

o In most situations a UMP test does not exist, namely when the null hypothesis is an equality and
the alternative is both sides (“=" against “#").

e Some useful results:

Normal populations:

Test about the mean, variance known 7=2_10 Ho n(0;1)

o/~In

_ n < \2
Test about the mean, variance unknown T = Ho ety §% = Zl=1( )

S/n n—1

n 72
Test about the variance 0= u ~ ;5(2”_1) S? = Zl=1( 1 )
o 7 —

34
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Large samples:

_ n < \2
X - X X

Test about the mean, variance unknown 7T = o ~n(0;1) §2 = Z’:l( )
S/\n n—1

. . X_ po °

Bernoulli population Z = ~n(0;1)
\/Po (1- Po) n

Poisson population V4 =M~n(0;l)

e Examples 10.13 to 10.15 (12.13 to 12.15) — Your company has been basing its premium on an
assumption that the average claim is 1200. You want to raise the premiums, and a regulator has
insisted that you provide evidence that the average now exceeds 1200. To provide such evidence, the
following numbers have been obtained:

27 82 115 126 155 161 243 294 340 384 457 680 855 877 974 1193 1340 1884 2558 15743

a) What are the hypotheses for this problem (example 10.13)?

b) Complete the test using the test statistic and rejection region that is promoted in most statistics
books (@ =0.05). Assume that the population has a normal distribution with standard deviation
3435 (Example 10.14).
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c) Determine the probability of making a Type Il error when the alternative hypothesis is true with
1 =2000 (Example 10.15).

Answers:
b)
x=14244 7= (1424.4—1200)x~/20 /3435 = 0.292154
Test (N-P procedure): # =0.05 z, =1.645 (one side test)
Rejection region: W ={(x,, x,,, X, ): 2 >1.645} or W = {(xl,xz,---,xzo): x> 1200+1.645><3435/\/2_0}
conclusion: do not reject HO

c) Pr(Accept H, | 1 =2000)=Pr(X <2463.507 |  =2000) = Pr(Z <0.603455) =0.7269

36



Instituto Superior de Economia e Gestao

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
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p-values

III

e Under the “classical” (Neyman-Pearson) approach a test will produce a decision on whether or not to

reject H, for a predetermined value of «.

e Sometimes this procedure does not provide the recipient of the result with clear information on the

strength of the evidence against H,,.

e A more informative approach is to calculate and quote the p-value of the observed test statistic. This
is the significance level of the test statistic, i.e.

* The probability, assuming H| is true, of observing a test statistic at least as “extreme”
(inconsistent with H,,) as the value observed;

= The significance level that originates a critical value equal to the observed value of the test

statistic.

If & is greater than the p-value we reject H, and if ¢ is smaller than the significance level we do not reject

H,
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¢ Definition 10.9 (12.9) — For a hypothesis test, the p-value is the probability that the test statistic takes

on a value that is less in agreement with the null hypothesis than the value obtained from the sample.
Tests conducted at a significance level that is greater than the p-value will lead to a rejection of the
null hypothesis, while tests conducted at a significance level that is smaller than the p-value will lead

to a failure to reject the null hypothesis.

e Comment — The definition should refer less than or equal to. This point has no practical influence

when the test statistic follows a continuous distribution as it is generally the case.

e Example: Resume previous example using p-value.

Test (p-value): p-value=Pr(Z > z) =Pr(X > x| £ =1200) = 0.3851 do not reject HO for ¢ =0.05
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Appendix 1 — Generalization of Example 10.4 (12.4)

A population has an exponential distribution with mean@. We want to estimate the population mean using
a sample of size n =2k +1. Determine the bias of the sample mean and the sample median as estimators
of the population mean.

Sample mean: E(X)=6
Sample median: Let 7 be the sample median. Then
2k +1)! 110 (116 p-1 -t/6
£.() = (l—e?f (%) o7 £>0
k' k!
v
fr(0) = —(2(’; 32”- eio)gr(i—e Y 150
(2k+1)! ( —(k+1)t/49) SNk ¢ vkes( oy K
=T oS (11 (e?)
(k1)* =0 s
Ck+D!( _iniro) g1 O s —suelk
=———\e 6 —1)’e
P A YR
k
2k +1)! Jk+s+1 i (J
— B A L _\Y
(k) 2D 7 k+s+1
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E(T|9)=j0°°th(t)dt

k
o 2k+1)! & sk+s+1l _gisinie (sj
— ¢ _1 — ¢ —dt
IO (k!)z Zs—o( ) 2] k+s+1

k
_y cay kD! (sj
o s=0

J‘“tk+5+1e—(k+s+1)t/a dt
(k) k+s+1

0 0

k
ks (kD) (sj 6
=2.Y (k1) k+s+1k+s+1

k s 2k+1)! 1
=0 -1

ZFO( ) klst(k—s)! (k+s+1)

That is
. k 2k +1)! 1
E(T168)=0h(k) with h(k) = -1)°
( ) () () ZFO( ) k!s!(k—s)!(k+s+1)2

As the median of the population is &1n2 we can imagine that, as the sample size increases, h(k) will be
closer to In2. Note that the limit of A(k) is not In2 (I think).
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Using Mathematica we can get values of h(k) for different sample sizes. Remember that In2 = 0.693147.

n factor n k factor
3 1]0.833333 41| 20(0.705194
5 210.783333 61| 30|0.701277
7 310.759524| 101| 50/(0.698073
9 410.745635, 201| 100(0.695629
11 510.736544| 1001| 500(0.693646
21 10| 0.71639| 2001/1000|0.693397
31 15|0.709016|10001|5000|0.693646
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Appendix 2 — Cramér Rao inequality

o Cramér-Rao Inequality applied to biased estimators
Let (Xl,Xz,u-,Xn) be a random sample from a population with probability density function
fx(x18) andletT=T(X,,X,,---,X,) be any estimator of 7(8)satisfying
d

ﬁE(Tle):J‘DX%(T(x)Xf(xI49))dx and var(T | ) < .

d
—ET16
19110

Then var(T' | 9) 2(

2

2
j J : 92
30) where 3(8) = E[ﬁln fr(X |.9)j =—E(ae In fy (X | 9)}

Proof: See Casella and Berger, 2" edition, pages 335 to 337

43



Instituto Superior de Economia e Gestao

Appendix 3 — Independence between X and S* when the population is normal

Without loss of generality let us consider that our population has mean 0 and variance 1.
Random sample (X, X,,:--, X, ). The density function of the random sample is given by

h  [—
Sx (X, Xp,000,x,) = (27[) ’zexp(—azilej

First step: Obtain §* = (n—l)_1 ((Zf ) ) Z . j
As D" (X, —X)=0 weget (X, - X)= X)->" (x,-X)=>" (X,-X)

then Z’?:(Xi—f) =(x,-X)+ Zn (X, -X)° (Z B )"‘Z
and finally §* =(n—1)""Y." (X,—=X)" =(n—1)" ( —)?) )+, X,.—Y))
- X,

Second step: As S? is a function of (X,-X,X, -, X —X) we have to prove that X is
independent of that vector. If we define ¥, =X, Y,=X,-X, ¥, =X,-X, .., Y, =X —Xwe
must prove that Y, is independent of (¥,,---,Y,).

Third step: Define the joint distribution of (¥,Y,,--,Y,)

We have
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YV, =X, —X
It is straightforward to see that x, =y, +x =y, + y, for i =2,3,---,n and that

X=y & Zizlxl. =ny & x,=ny _Zi=2xi =ny _Zi=2 y,—(n=1Dy =y —Zl_=2 y; theinverse
transformation is then

xlzyl_zzl:zyi -1 -l
X =y, +y e I 1 - 0

3 272 71 3andthe Jacobian will be J = =n
L xn:yn-l-yl 1 O 1
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Then

D
y12—2y12?=2yi+(Z?=zyi)2+2?=2yl’2+2?=2y12+2ylz?=2yiD
=27z)""* nexp 1 Y12+(Z?2yi)2+z:lzyi2+(n_1)y12j)

=2z)""* nexp —% ny12+((2?:2y,~)2+2?:2yi2)j
=(27)""*n"?ex p[ n;zj x(@z) " UzeXp(_% (Z:Lzyi)z+2?2yi2))

As the joint distribution is the product of the marginal distributions, Y, is independent of

(YZ’“',Yn)'

=2z n exp| -

N | —
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Appendix 4 — Confidence interval for Bernoulli populations (large samples)

OX,. X, X, .0=—2=8 X706 “No
\/V&I'(X) \/9(1—9)
n

X -6 X-6

Pr(—za,zSQ(XI,Xz,...,Xn,Q)Sza,2)=P1‘ — g ST (9(1 0) < Zan | = O 6’(1—6’)\/;‘SZ0[/2J
l’l

X -6 X -6 ’ (X-6) 2
=7 <z, | —Zn| <, “/2@()?—9)2—@9(1—9)@
Jo1-6) Jo1-6) 61— 9) n n

2 2
o X2+02-20X —lal2gyfair g2 <
n n

2 2
@92(1+@J—9(2)?+@J+ X2<0

n n

Then, the possible values of 8 have to be between the 2 roots of the equation.
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Appendix 5 — Unbiased estimator for & (normal populations)

Let (X,, X,,...,X,) be arandom sample of size n from a normal population with mean x and variance o’

2
_1)§2 " (x.-X
As it is well known, Q =% ~ Xio with §7 = Zl:l(n_ll ) :
Result 1-If ¥ ~ 4, then E(VY)= Ll +D/2)v2
I(r/2)
1
Proof: = il
fY(y) F(r/2)2r/2y
0o 0o 1 1 o0
E\/? — 1/2 d — 1/2 r/2—le—y/2d — (r+1)/2—le—y/2d
( ) J‘O y fY(y) y j‘O y F(r/2)2r/2y y l_,(r/2)2,,/2 —[0 y
_D((r+1)/2)2"0" (e 1 PRI o2 g
(r/2)2""? 0 T((r+1)/2)2*D"2
(r+1)/2
- F((rr-li 1)//2 §)2% = The value of the integralis 1 (density of a y;,,,, over its domain)
r
CT((r+D/2)V2
(r/2)
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Applying result 1 to Q, we get E(\/@) IE((n/_Zl))\//; ut E(\/7) E[\/WJ

(n—-1) o T(n/2)32 _ T(n/2)V2
o B " T((n-1)/2) E(S)_F((n—l)/Z)\/mo-

Consequently an unbiased estimator will be given by

~ r((n—l)/z)\/ﬂs
- I'(n/2)V2 '
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Appendix 6 — Density function for the rth order statistic

. (n . o
The cumulative distribution function is F, (y) = Zj_ ( j(Fx (y))’ (1= Fy (y))" . Let us prove that the
r =r J

n!
(r=D!M'(n—-r)!

density function is f, (y) = (F, () " (1=F, ()" f ().

_dFYr(y)_ d n n J _ n—j
fYr()’)— dy _dyzf’( j(FX(y)) (1 FX()’))

J

(ij D(Fy (¥) " (1=Fy ()" == ) £ D (Fy () (1= F, (y))”_j_l)

n
J
n
J

Jfx O (Fy (7)) (1= Fe ()™ —Z'}r[’;J(n—j)fX(y)(Fx () (1=F, ()"
That is
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fr ()= (’:)rfx WM(F (v) (1=F )™ +Zj,ﬂ[';jjfx D(Fe () (1= F ()" -

—Zn._lEn.J(n— D fx D Fy (y))j(l—FX (y))n_j_1 when j = n the expression is 0
i=r{ j
n!

= OE )T 1= E o)™ +Zﬁzi(sﬁlj<s+l>fx<y>(f“x () (1= F )"

—Zn:l [nj(n — D W(Fy (y)) / (1-Fy (y))"_j_1 where s = j —1 in the 2nd sum
J=r ]

Noting that

E n J(s+1)= nl(s+1) _ n! :(HJ(H_S)
s+1 s+DI(n—s-1)! sln—s-D! \s

We see that the two sums are equal and then

fr ()= (Fy () A=Fe )" fx ()

n!
(r=D!M!'(n-r)!
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